normix

Contents:

  • Demos & Notebooks
  • Mathematical Background
    • The Generalized Inverse Gaussian Distribution
    • The Generalized Hyperbolic Distribution
    • EM Algorithm for Generalized Hyperbolic Distributions
    • References
  • API Reference
normix
  • Mathematical Background
  • Edit on GitHub

Mathematical Background

This section provides the mathematical foundation for the distributions implemented in normix, based on [Shi2016].

Contents:

  • The Generalized Inverse Gaussian Distribution
    • Definition
    • Alternative Parameterization
    • Moment Generating Function
    • Moments
    • Exponential Family Form
    • Maximum Likelihood Estimation
    • Numerical Challenges
    • Hellinger Distance
    • Special Cases
    • References
  • The Generalized Hyperbolic Distribution
    • Definition as Normal Mixture
    • Joint GH Distribution
    • Marginal GH Density
    • Alternative Parameterization
    • Model Identifiability
    • Exponential Family Form
    • Recovering Parameters from Expectations
    • Hellinger Distance
    • Numerical Stability
    • Special Cases
    • References
  • EM Algorithm for Generalized Hyperbolic Distributions
    • Overview
    • Conditional Distribution of Y given X
    • Conditional Expectations
    • The EM Algorithm
    • Parameter Regularization
    • MCECM Algorithm
    • Special Cases
    • Numerical Considerations
    • Implementation in normix
    • References

References

[Shi2016]

Shi, X. (2016). Generalized Hyperbolic Distributions and Related Topics. PhD Thesis.

Previous Next

© Copyright 2024, normix developers.

Built with Sphinx using a theme provided by Read the Docs.